聪明文档网

聪明文档网

最新最全的文档下载
当前位置: 首页> Suspended graphene sensors with improved signal and reduced noise

Suspended graphene sensors with improved signal and reduced noise

时间:    下载该word文档
pubs.acs.org/NanoLett
SuspendedGrapheneSensorswithImprovedSignalandReducedNoise
ZengguangCheng,QiangLi,ZhongjunLi,QiaoyuZhou,andYingFang*
NationalCenterforNanoscienceandTechnology,11BeiyitiaoStreet,Zhongguancun,Beijing100190,People’sRepublicofChina
ABSTRACTWereportenhancedperformanceofsuspendedgraphenefieldeffecttransistors(Gra-FETsassensorsinaqueoussolutions.Etchingofthesiliconoxide(SiO2substrateunderneathgraphenewascarriedoutinsituduringelectricalmeasurementsofdevices,whichenabledsystematiccomparisonoftransportpropertiesforsamedevicesbeforeandaftersuspension.Significantly,thetransconductanceofGra-FETsinthelinearoperatingmodesincreases1.5and2timeswhenthepoweroflow-frequencynoiseconcomitantlydecreases12and6timesforholeandelectroncarriers,respectively,aftersuspensionofgrapheneinsolutionfromtheSiO2substrate.Suspendedgraphenedeviceswerefurtherdemonstratedasdirectandreal-timepHsensors,andcomplementarypHsensingwiththesamenanodeviceworkingaseitherap-typeorn-typetransistorwasexperimentallyrealizedbyoffsettingtheelectrolytegatepotentialinsolution.Ourresultshighlighttheimportancetoquantifyfundamentalparametersthatdefineresolutionofgraphene-basedbioelectronicsanddemonstratethatsuspendednanodevicesrepresentattractiveplatformsforchemicalandbiologicalsensors.
KEYWORDSGraphene,noise,suspended,pHsensing
rapheneisattractingtremendousinterestsduetoitsnearlyperfectcrystalqualityandsuperbphysicalproperties,1-5andemergingapplicationsarebeing
developedbasedonthisnovelbuildingblock.6-9Inparticu-lar,owingtoitsexceptionalcarriermobilityandone-atomicthickness,graphenefieldeffecttransistors(Gra-FETshavebeenproposedtoholdgreatpotentialsforsensitiveandlabel-freedetectionofchemical/biologicalspecies.9Todate,studieshavebeenfocusedexclusivelyongraphenesensorssupportedonsiliconoxide(SiO2substrates,10-13althoughchargetrapsattheinterfaceandintheoxidehavebeenshowntoactasexternalscatteringcentersanddegradetransportpropertiesinsingle-layergraphenewhoseatomsareallexposeddirectlytofluctuationsofextrinsicimpuri-ties.14-18Wehaveundertakenandreporthereinstudiesonperformanceimprovementofgraphenedevicesbysuspend-ingtheminaqueoussolutionthroughanovelinsituetchingtechnique.Ourresultsshowthat,owingtoconcomitantlyincreasedtransconductanceanddecreasednoiselevelbyremovaloftheoxide,thesignal-to-noiseratiosofsuspendedgraphenenanodeviceswereimprovedby14dBinlow-frequencyregime(below1kHzforbothholeandelectroncarrierscomparedwiththosesupportedonSiO2substrates.Asanexample,suspendeddevicesweredemonstratedasreal-timeandsensitivepHsensors,andcomplementarydetectionwitheitherholesorelectronsaschargecarriersinthesamegraphenedevicewasachieved,openingupnewopportunitiesforsuspendedgrapheneasflexiblecandidatesforbioelectronics.
*Towhomcorrespondenceshouldbeaddressed.E-mail:fangy@nanoctr.cn.Receivedforreview:02/22/2010PublishedonWeb:00/00/0000
©XXXXAmericanChemicalSociety
G
Figure1illustratestheoveralldesignofourexperiments.First,Gra-FETswerefabricatedfrommechanicallyexfoliatedsingle-layergraphenesupportedontopofasiliconsubstratewith300nmSiO2.5,19Briefly,source-draincontactstographeneweredefinedbye-beamlithographyandsubse-quentlymetallizationwith5nmCr/70nmAu.Nanodevicesinourstudywereshowntohavesmoothgraphenesurfacewithheightof1.0nmbyatomicforcemicroscopy(AFM(seeSupportingInformation,FigureS1a.Typical2-probemobilitiesofa5µmlongGra-FETgatedthrough300nmSiO2inairwerecalculatedas4600and4100cm2/V-secforholeandelectroncarriers(seeSupportingInformation,FigureS1b,respectively,whichareconsistentwithreportedvaluesforpristinegrapheneatroomtemperature.5
FIGURE1.GrapheneFETsintheelectrolytesolution.(aSchematicrepresentationofourexperimentalsetupwhereasingle-layergrapheneissupportedinsolutionbyCr/Aucontactstobridgeatrenchintheoxide.(bInsituetchingofSiO2underneathgraphene.TheconductanceofgraphenestartstodropgraduallyafterbufferedHFwasaddedtothePDMSchamber.Single-layerdevicesusuallystabilizewithin50to100s,indicatingthecompletesuspensionofgrapheneinsolution.ArrowsindicatethetimewhensolutionwasswitchedinthePDMSchamber.Theinsetshowsascanningelectronmicroscope(SEMimagetakenofasuspendedgraphenedeviceaftersolutionmeasurements.Scalebaris0.5µm.
A
DOI:10.1021/nl100633g|NanoLett.XXXX,xxx,000–000

FIGURE2.TransportcharacterizationofaGra-FETinsolution.BlackcurveisconductancevstheelectrolytegatevoltageofthegraphenedevicesupportedonSiO2substrate,andredcurveisofthesamedeviceaftersuspensionofgrapheneinsolution.Theblackandreddiamondshighlightelectrolytegatepotentialsatwhichthecom-parisonoftransconductanceandnoisespectrawasperformedinthetextandFigure3.
Apolydimethylsiloxane(PDMSchamberwasthenin-corporatedovertheGra-FETchiptoconfinetheelectrolyticsolutionof100mMpotassiumchlorideand10mMphos-phate(pH7(Figure1a.AnonleakAg/AgClreferenceelec-trodewasplacedinthecenterofthereservoirastheelectrolytegate.Theconductanceofgraphenesensorswasmonitoredthroughthesourceanddraingoldelectrodesusinglock-indetectionbyapplyinga30mVsinusoidalbiasvoltage(Vsdwithafrequencyof109Hz.
Toquantifyexclusivelyeffectsfromtheunderlyingoxidesubstrate,wedevelopedaninsituetchingtechniquebycarefullykeepingdevicesimmersedinliquidduringswitch-ingofsolutionsandmeasuringofGra-FETs’conductance.Weeliminatedthedryingstepsofsuspendedgraphenedevicesreportedbyformerstudies14,16becausethecycleofdryingandwettingcaneasilygeneratestresstodeformgrapheneandtheirmetalcontacts,andaltertheelectricalpropertiesofdevicesunintentionally(seeSupportingInfor-mation,FigureS2.EtchingofSiO2underneathgraphenewasmonitoredinreal-timebytrackingconductancesignalsthroughdevices(Figure1b,andwefoundthatincubationinbufferedHFresultsinca.100nm/minetchingrateunderneathgraphene.Wenotethatetchingofdevicesinthefollowingdiscussionwascarriedoutfor1min.14,20,21
TheelectricalmeasurementsofatypicalGra-FET(0.5µmlongand0.6µmwidebeforeandaftersuspensionofgrapheneinsolutionweresummarizedinFigure2andSupportingInformationFigureS3.TheblackcurveinFigure2showstheconductance(dI/dVsdorGofthedeviceplottedagainsttheelectrolytegatevoltage(VgatewithgraphenesupportedonSiO2substrate.Thetransconductanceofholes(dG/dVgateinthenanodevicereachesashighas1mS/VinthelinearoperatingmodebecausetheelectrolytegatewasabletomodulateeffectivelytheFermilevelinsingle-layergraphenethroughthedoublelayerofions.22Notethatthe
©XXXXAmericanChemicalSociety
B
conductanceofthedeviceislargeatnegativeelectrolytegate,anditstartstodecreasewithincreasedgatevoltageduetothedepletionofholecarriersinthep-typegrapheneuntilreachesitsminimumattheDiracpoint,thentheconductancestartstoincreaseagainwiththeaccumulationofelectroncarriersinthecurrentlyn-typegraphene.Inter-estingly,theDiracpointofthegraphenedeviceonSiO2settlesat0.1Vwhenthechemicalpotentialoftheneutralsolution(pH7isat0V.WeobservedalargerangeofDiracpointpotentialsinourGra-FETsonSiO2,(0.1(0.2V,whichwasalsoreportedbysimilarstudiesongraphenewithnakedsurfaces.12,13,23ThisvariationofdevicepropertiesinGra-FETsonSiO2isapparentlydisadvantageousinpracticalapplicationswherereproduciblecharacteristicsarecriticalfordevicesas,forexample,reliableclinicaldiagnosticsensors.24
AfterinsituetchingofSiO2,theresponseoftheGra-FET’sconductancetotheelectrolytegatepotentialwascharacter-izedagainintheneutralelectrolytesolutionasshownbytheredcurveinFigure2.Valuableinformationcanbeim-mediatelydeducedbycomparingtransportpropertiesofthesamedevicebeforeandaftersuspension.(1TheDiracpointofgraphenemovedto0Vafteretchingofoxide,whichwasreproducedbyotherdevicesinourstudy,indicatingthattheFermilevelofsuspendedgrapheneiscontrolledsolelybythesolution.(2Theoperatingprincipleofelectricalsensorsisbasedontheirconductancechangesrespondingtolocalpotentialchanges,sotheirsignalsensitivitycanbedescribedasdG/dVgate,thatis,thetransconductanceofdevices.10,24Significantly,thetransconductance,orthesignalsensitivity,ofthegraphenedeviceinthelinearoperatingregionsincreases1.5and2timesforholeandelectroncarriers,respectively,aftersuspension.(3Thehole-electronasymmetrywasfoundforbothelectrolyte-gateandback-gategeometryoftheGra-FETonSiO2(blackcurveinFigure2andSupportingInformationFigureS3b.AsymmetricholeandelectronbrancheswerepreviouslyreportedinbothnonsuspendedandsuspendedGra-FETswithchannellengthbelow1µminvacuum,althoughtheoriginoftheasymmetrywasnotunderstoodthen.14Surpris-ingly,theasymmetryobservedinourshort-channeldevicesdecreasesgreatlyaftersuspensionofgrapheneinelectrolytesolutions(redcurveinFigure2,indicatingeffectsfromdielectricscreeningandreducedscatteringmayberespon-siblefortheimprovedsymmetryinsolution,25,26althoughadetailedstudyisneededinfuturetorevealtheunderlyingmechanism.
Thelevelofsignalthatcanbeprocessed,ortheresolu-tion,ofasensorisultimatelydeterminedbyitssignal-to-noiseratio.Thusthenoisespectraofgraphenedevicesinelectrolytesolutionswerefurtherexaminedunderourex-perimentalcondition,andwewillconcentrateourdiscussiononlow-frequency(below1kHznoisewhichhasbeenre-portedtobedominantinlimitingperformanceofnanode-vices.15Figure3aandSupportingInformationFigureS4b
DOI:10.1021/nl100633g|NanoLett.XXXX,xxx,000-–000

FIGURE3.Noisecharacterizationofgraphenedeviceinelectrolytesolution.(aNormalizedcurrentpowerspectraldensityisshownasafunctionoffrequencyofthegraphenedeviceonSiO2atdifferentelectrolytegatepotentials.ThepowerspectraweremeasuredataDCmodewithabiasvoltageof30mV,andsharppeaks(50Hzanditsharmonicswerecausedbyextrinsicnoisefromthepowersource.(bComparisonofgraphene’snoisepowerspectrainthelinearoperatingmodeswithholesascarriersbefore(black,Vgate-0.10Vandaftersuspension(red,Vgate-0.15V.(cComparisonofgraphene’snoisepowerspectrawithelectronsascarriersbefore(black,Vgate0.20Vandaftersuspension(red,Vgate0.15V.
summarizethecurrentnoisepowerspectraldensitynormal-izedbythemeansquareofcurrent,S(SI/(I2,asafunctionoffrequency,f,ofthesamegraphenedeviceinFigure2beforesuspension.ThenormalizedpowerspectraoverlapinthelinearoperatingmodesandaroundtheDiracpointoftheGra-FET,indicatingthatnoisedensityingraphenegatedbytheelectrolytegateisindependentofthegatepotential,althoughgate-dependentnoisespectrahavebeenreportedingraphenenanobeltsgatedthroughSiO2dielectric.15Fur-ther,thepowerspectraldensityofthegraphenedevicewasinverselyproportionaltothefrequency,representingthe1/fflickernoisecharacteristicubiquitousinnanodevices.ThusthenoisespectraldensityingraphenedevicessupportedonSiO2canbeexpressedas27
andSIhasaunitofA2/Hz.Thusthepowerofthecurrentnoise,Pnoise,foragivenfrequencyband[f1,f2]inthelow-frequencyregioncanbecalculatedas
Pnoise
f
f2
1
SIdf
f
f2
1
f2AI2
dfAI2lnff1
AI2
SI
f
inthelow-frequencyregionfortheelectrolytegategeometryinsolution,whereA10-6istheamplitudeofthe1/fnoise,
©XXXXAmericanChemicalSociety
andPnoiseiswithaunitofA2.
Aftersuspensionofgrapheneinsolution,thenormalizedpowerspectraldensityofthedevicedropped12and6timesforholeandelectroncarriers,respectively,comparedwiththatonSiO2substrate(Figure3b,c.Ithasbeenfoundthattrappedchargesattheinterfaceandintheoxidedegradetransportcharacteristicsofsingle-layergraphene.14,17FormerstudyofgraphenedevicesonSiO2substratewithlow2-probecarriermobilityinvacuum(100cm2/V-secwerereportedtoshow20timesimprovedperformancebyionscreeningofexternalimpuritychargesinhighionicsolu-tions.25OurGra-FETs,ontheotherhand,havehighmobility(4000to5000cm2/V-seconSiO2intheback-gategeometry
C
DOI:10.1021/nl100633g|NanoLett.XXXX,xxx,000-–000

inair.Thefurtherimprovedperformanceinoursuspendedgrapheneshowsthatdevicedegradationassociatedwithoxidesubstratesisstilldominantinournonsuspendeddevices,despiteanypossibleionicscreeningeffectin100mMsolutions.ItisimportanttonotethatlowionicstrengththatofferslongDebyelengthisdesirablefordetectionofchargedbiomoleculeswithnano-FETs,24,28thustheelimina-tionoftheoxidebysuspensioncanbeincreasinglycriticaltothereductionofnoiseforsingle-layergrapheneinsolu-tionswithlowionicstrength.
Overall,thesignal-to-noiseratiodefinedas29
SNR(dB20log
AsignalPsignal
10logAnoisePnoise
wasincreasedby14dBinlow-frequencyregimeforboth
holeandelectroncarriersingraphenedevicesaftersuspen-sion.Thusourresultsexplicitlyprovethatforsingle-layergrapheneFETbasedsensors,aplatformwithsuspendednanodevicesisadvantageoustoachievelowdetectionlimitinsolution.
Todemonstratetheviabilityofsuspendedgraphenedeviceasdirectchemicalsensors,weappliedournanode-vicestopHsensing.SolutionsfrompH6topH9weredeliveredtothesurfaceofagraphenedevicesequentially,andforeachsolution,theelectrolytegateresponseofthedevice’sconductancewasmeasuredasshowninFigure4a.WefoundthattheDiracpointofgrapheneshiftspositivelyfrompH6topH9(seeSupportingInformation,FigureS5,whichisconsistentwiththeincreasedchemicalpotentialofsolutionandconfirmsthecapabilityofsuspendedgrapheneforchemicalsensinginsolution.30-32
Comparedtoformerunipolarsiliconnanowire(SiNWorcarbonnanotube(CNTbasedp-typesensors,33,34suspendedgrapheneshowsnearlysymmetrictransportaroundtheDiracpointinneutralsolution(Figure4a,soitcanworkaseitherap-typeorn-typesensorwhenasmallgatepotential,withoutintroducinganyredoxreactionofmoleculesinsolution,isappliedtoswitchitscarriercharacteristic.Weinvestigatedthetime-dependentresponseoftheGra-FET’sconductancetodifferentpHsolutionswhentheelectrolytegateisbiasedat-0.05and0.05V,respectively.Theconductanceofthenano-sensorwasmonitoredinreal-timeassolutionswithpH6topH9weresequentiallydeliveredtothesurfaceofthesus-pendedgraphene.AsshowninFigure4b,thegrapheneworksasap-typematerialwhen-0.05Vgatepotentialisapplied.Similartoformerp-typedevicesofSiNWsorCNTs,33,35con-ductanceofthegraphenedeviceincreaseswithincreasedpHvalues.Onthecontrary,whenthegatepotentialisswitchedto+0.05V,thesignalflipsitssignandtheconductanceofthegraphenedevicedecreaseswithincreasedpH.Thepolarityflipofsignalsverifiesthatthesensingmechanismingraphenenanodevicesisduetoafield-effect.Theuniquecapabilityto
©XXXXAmericanChemicalSociety
FIGURE4.GrapheneaspHsensor.(aGra-FET’sconductanceasafunctionoftheelectrolytegatevoltageinpH6,7,8,and9solutions.(bReal-timedetectionofsolution’spHbyconductancechangeofthesamegraphenedevicewiththeelectrolytegatepotentialbiasedat-0.05(leftbranchand+0.05V(rightbranch.
tuneeasilyGra-FETsbetweenp-typeandn-typecharacteristicspresentspowerfulconfirmationonthenatureofsensingsig-nals.WefurthernotethatthepHdetectionofourgraphenedevicesisreversible.Thuscomplementaryandreversiblemeasurementsindifferentoperatingregionsofgraphenede-monstratetheflexibilityofoursuspendedgraphenesensors.Insummary,quantitativestudiesontheimprovedper-formanceofsuspendedgraphenedevicesinsolutionwerereported.Ourresultsshowthat,inlow-frequencyregime,thesignal-to-noiseratioofgraphenedevicesincreased14dBforbothholeandelectroncarriersasaresultofconcomi-tantlyincreasedmobilityanddecreasednoiselevelbysuspensioninsolution.Directandreal-timedetectionofsolution’spHbysuspendedgraphenewasdescribed,andcomplementarysignalsfromthesamegraphenedeviceasap-typeorn-typetransistorwerepresented.Theenhancedelectricalcharacteristicsofsuspendedgraphenedevicesinaqueoussolutionshowthattheyareadvantageousforchemicalandbiologicaldetectionthantheircounterpartssupportedonsubstrates,andourresultsareexpectedto
D
DOI:10.1021/nl100633g|NanoLett.XXXX,xxx,000-–000

bringattentionstosuspendednanodevicesingeneralaspromisingplatformsforbioelectronics.
Acknowledgment.Y.F.acknowledgessupportofthis(15Lin,Y.M.;Avouris,P.NanoLett.2008,8(8,2119–2125.
(16Bolotin,K.I.;Sikes,K.J.;Jiang,Z.;Klima,M.;Fudenberg,G.;
Hone,J.;Kim,P.;Stormer,H.L.SolidStateComm.2008,146(9-10,351–355.
(17Liu,G.;Stillman,W.;Rumyantsev,S.;Shao,Q.;Shur,M.;Balan-workbySpecialPresidentialFoundationoftheChineseAcademyofSciences,China(08172911ZX,“973”Fund(2009CB930200,andtheNationalNaturalScienceFounda-tionofChina(20973045.
SupportingInformationAvailable.MethodsandFiguresS1-S5.ThismaterialisavailablefreeofchargeviatheInternetathttp://pubs.acs.org.
REFERENCESANDNOTES
(1Novoselov,K.S.;Jiang,D.;Schedin,F.;Booth,T.J.;Khotkevich,V.V.;Morozov,S.V.;Geim,A.K.Proc.Natl.Acad.Sci.U.S.A.2005,102(30,10451–10453.
(2Zhang,Y.B.;Tan,Y.W.;Stormer,H.L.;Kim,P.Nature2005,438(7065,201–204.
(3Geim,A.K.;Novoselov,K.S.Nat.Mater.2007,6(3,183–191.(4Novoselov,K.S.;Jiang,Z.;Zhang,Y.;Morozov,S.V.;Stormer,H.L.;Zeitler,U.;Maan,J.C.;Boebinger,G.S.;Kim,P.;Geim,A.K.Science2007,315(5817,1379–1379.
(5Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Zhang,Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A.Science2004,306(5296,666–669.
(6Meyer,J.C.;Girit,C.O.;Crommie,M.F.;Zettl,A.Nature2008,454(7202,319–322.
(7Wang,X.;Zhi,L.J.;Mullen,K.NanoLett.2008,8(1,323–327.(8Liu,Z.;Robinson,J.T.;Sun,X.M.;Dai,H.J.J.Am.Chem.Soc.2008,130(33,10876.
(9Geim,A.K.Science2009,324(5934,1530–1534.
(10Schedin,F.;Geim,A.K.;Morozov,S.V.;Hill,E.W.;Blake,P.;Katsnelson,M.I.;Novoselov,K.S.Nat.Mater.2007,6(9,652–655.
(11Mohanty,N.;Berry,V.NanoLett.2008,8(12,4469–4476.(12Ohno,Y.;Maehashi,K.;Yamashiro,Y.;Matsumoto,K.NanoLett.2009,9(9,3318–3322.
(13Ang,P.K.;Chen,W.;Wee,A.T.S.;Loh,K.P.J.Am.Chem.Soc.2008,130(44,14392–14393.
(14
Du,X.;Skachko,I.;Barker,A.;Andrei,E.Y.Nat.Nanotechnol.2008,3(8,491–495.©XXXXAmericanChemicalSocietydin,A.A.Appl.Phys.Lett.2009,95(3,033103.
(18Cho,S.;Fuhrer,M.S.Phys.Rev.B2008,77(8,084102.
(19Li,Q.;Li,Z.J.;Chen,M.R.;Fang,Y.NanoLett.2009,9(5,2129–
2132.
(20Longetchingtimewasfoundtoincreasethecontactresistance
ofGra-FETsdueto,forexample,thedeformationofmetalcontacts.
(21Akarvardar,K.;Eggimann,C.;Tsamados,D.;Chauhan,Y.S.;
Wan,G.C.;Lonescu,A.M.;Howe,R.T.;Wong,H.S.P.IEEETrans.ElectronDevices2008,55(1,48–59.
(22Rosenblatt,S.;Yaish,Y.;Park,J.;Gore,J.;Sazonova,V.;McEuen,
P.L.NanoLett.2002,2(8,869–872.
(23Chen,F.;Qing,Q.;Xia,J.L.;Li,J.H.;Tao,N.J.J.Am.Chem.Soc.
2009,131(29,9908–9909.
(24Zheng,G.F.;Patolsky,F.;Cui,Y.;Wang,W.U.;Lieber,C.M.Nat.
Biotechnol.2005,23(10,1294–1301.
(25Chen,F.;Xia,J.L.;Ferry,D.K.;Tao,N.J.NanoLett.2009,9(7,
2571–2574.
(26Jang,C.;Adam,S.;Chen,J.H.;Williams,D.;DasSarma,S.;
Fuhrer,M.S.Phys.Rev.Lett.2008,101(14,146805.
(27Lin,Y.M.;Appenzeller,J.;Knoch,J.;Chen,Z.H.;Avouris,P.Nano
Lett.2006,6,930–936.
(28Stern,E.;Klemic,J.F.;Routenberg,D.A.;Wyrembak,P.N.;
Turner-Evans,D.B.;Hamilton,A.D.;LaVan,D.A.;Fahmy,T.M.;Reed,M.A.Nature2007,445(7127,519–522.
(29Mitchell,F.H.Introductiontoelectronicsdesign,2nded.;Prentice-Hall,Inc:UpperSaddleRiver,NJ,1992.
(30Larrimore,L.;Nad,S.;Zhou,X.J.;Abruna,H.;McEuen,P.L.Nano
Lett.2006,6(7,1329–1333.
(31Eisele,I.;Doll,T.;Burgmair,M.Sens.Actuators,B2001,78(1-3,19–25.
(32Oprea,A.;Simon,E.;Fleischer,M.;Frerichs,H.P.;Wilbertz,C.;
Lehmann,M.;Weimar,U.Sens.Actuators,B2005,111,582–586.(33Cui,Y.;Wei,Q.Q.;Park,H.K.;Lieber,C.M.Science2001,293
(5533,1289–1292.
(34Li,C.;Curreli,M.;Lin,H.;Lei,B.;Ishikawa,F.N.;Datar,R.;Cote,
R.J.;Thompson,M.E.;Zhou,C.W.J.Am.Chem.Soc.2005,127(36,12484–12485.
(35Lee,K.;Kwon,J.H.;Moon,S.I.;Cho,W.S.;Ju,B.K.;Lee,Y.H.
Mater.Lett.2007,61(14-15,3201–3203.
EDOI:10.1021/nl100633g|NanoLett.XXXX,xxx,000-–000

  • 29.8

    ¥45 每天只需1.0元
    1个月 推荐
  • 9.9

    ¥15
    1天
  • 59.8

    ¥90
    3个月

选择支付方式

  • 微信付款
郑重提醒:支付后,系统自动为您完成注册

请使用微信扫码支付(元)

订单号:
支付后,系统自动为您完成注册
遇到问题请联系 在线客服

常用手机号:
用于找回密码
图片验证码:
看不清?点击更换
短信验证码:
新密码:
 
绑定后可用手机号登录
请不要关闭本页面,支付完成后请点击【支付完成】按钮
遇到问题请联系 在线客服